Features of passive mode-locking in a heavily-doped
ytterbium fiber laser
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We have investigated features of the all-fiber heavily doped ytterbium laser oper-
ating in passive mode-locked regime with a repetition rate of ultrashort pulses of 456
MHz without the use of additional nonlinear optical elements. The generation dynamics
of the heavily-doped ytterbium fiber laser assembled according to the classical Fabry-
Perot scheme with two mirrors under continuous direct core pumping at the 976 nm
wavelength was studied. The formation of ultrashort pulses as a result of passive mode-
locking was shown [1]. Passive mode-locking is explained by saturation of the absorp-
tion, while the role of the saturable absorber was played by the active fiber itself with a
high content of ytterbium ions. The principle of the created laser operation is similar to
lasers operating in the passive mode-locking regime with the use of saturable absorbers
[2,3].

The laser was created using a fiber with a high ytterbium oxide content, with a
relatively low concentration of large cluster, which made it possible to avoid a high
level of "gray" losses in the active fiber [4] (plasma chemical method). The absorption
coefficient at the wavelength of 976 nm was about 2.4 dB / mm (Fig. 1). The ytterbium
content in the glass corresponding to the measured absorption coefficient was 0.84
mol.% Yb,O3 [5]. The difference in the refractive index of the core and shell was 0.009,
the core diameter was about 4 microns. The laser was assembled according to the clas-
sical Fabry-Perot scheme with an output (0.9) and high reflective (0.999) mirrors in the
form of fiber Bragg gratings (FBG) with a maximum reflection at a wavelength of
1067.7 nm. A polarization controller (PC) was used to control birefringence in the laser
cavity.
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Fig. 1. Absorption spectrum of ytterbium doped fiber (left). Scheme of an experimental setup of an
ytterbium fiber laser (right). OSA-optical spectrum analyzer, WDM-multiplexer, PC-polarization con-
troller, L-resonator length

It is shown that depending on the pump power, the laser operates in three differ-
ent regimes of passive mode-locking. At a low pump power (=25-50 mW) a stable pas-
sive mode-locking regime (CW ML) was achieved, which is characterized by the stable
in time ultrashort pulses amplitude (Fig.2a,b). The repetition rate of the ultrashort puls-
es for a 21.9 cm laser cavity was 456 MHz. The period of the pulses in the train coin-
cides with the time of the cavity pass, which is consistent with the generally accepted
theory of passive mode-locking [6]: 4t=2nL/c (where L is the length of the cavity, n is



the refractive index, and c is the speed of light). The observed passive mode-locking in
the scheme under consideration can be explained by nonlinear absorption in the active
fiber itself, which works similarly to saturable absorbers. The effect occurs on a weakly
pumped section of the fiber, in which the population inversion and consequently the
absorption level depends on the intensity of the stimulated emission in the cavity.
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Fig. 2. Ytterbium laser generation power as a function of time at a pump power of 38 mW (stable
passive mode-locking regime) at 40 nanosecond (a) and 100 microsecond scale (b), at a pump power of
115 mW (c) (beat mode) and at a pump power of 212 mW (d) (transient chaotic beat mode).

With pump power increase to ~50-200 mW low-frequency beats occurred in the
form of amplitude modulation of the generation intensity envelope (Fig.2c). The detect-
ed beats were explained by the dynamics of the elliptically polarized pulse train for-
mation with rotating polarization components for group-velocity-locked vector solitons,
which are also called polarization rotation vector solitons (PRVSs) [7]. With a further
increase in the pump power (=200-310 mW), transient chaotic beats (TC ML) appeared
(Fig. 2d).
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